Главная Проекты Магазин СТО Форум Партнеры О компании Карта
 
Главная
Проекты
СТО
Магазин
 Настройка
 Фильтры
 Свечи
 Приборы
 Электроника
   MAF-Emulator
   Traction
   AEM
   Innovate
   TurboXS
   Буст-контрол.
 AN Фиттинги
 Топливная
 Двигатель
 Full-Race
 Mazda
 BMW Турбо
 Турбо
   Турбины
     Garrett GTX II
     Garrett GTX
     Garrett GT
     Garrett T
     FP-HTA
     Precision
     OEM
   CHRA GT/GTX
   Хаузинги Garrett
   Хаузинги Tial
   Турбо-Киты
   Впрыск метанола
   Интеркулеры
   BlowOff
   WasteGate
   Силикон
   Разное
 Трансмиссия
 Тормоза
 Выхлоп
 Термоизоляция
 Распродажа
HQ.Галерея
Форум
Пресса
Tech.Info
Партнеры
О компании
Site map
 


Основы турбонаддува. Часть 2.


Термин Trim.

Trim это общепринятый термин, используемый при описании турбинного или компрессорного колеса турбины. Например, вы часто могли слышать фразу "У меня стоит турбина GT2871R с 56 Trim". Так что же это такое? Trim это величина, показывающая соотношение между индюсером (inducer) и эксдюсером (exducer) турбинного или компрессорного колеса. Еще более точно, это соотношение их площадей.

Диаметр индюсера - это диаметр колеса крыльчатки в той ее части, где воздух входит в крыльчатку, а эксдюсер это диаметр колеса, где воздух из него выходит.

Конструкция турбины такова, что индюсер компрессорного колеса меньше чем его эксдюсер, а турбинного - наоборот:


Например:
Турбина GT2871R (Garrett part number 743347-2) имеет компрессорное колесо с:
Диаметр индюсера: 53.1мм
Диаметр эксдюсера: 71.0мм

Таким образом Trim для него будет:



Trim крыльчатки, как компрессора, так и турбины напрямую влияет на ее производительность. Чем больше величина trim тем, как правило, больший поток воздуха может пройти через крыльчатку.

Понятие A/R хаузинга

A/R (Area/Radius) описывает геометрическую характеристику компрессорного или турбинного хаузинга. Технически A/R означает отношение сечения канала хаузинга, деленое на расстояние от центра вала до центра этого сечения:


Значение A/R имеет разное влияние на производительность турбинной части и компрессорной.

A/R компрессора практически не влияет на его производительность. Как правило, хаузинги с большим A/R применяются для оптимизации отдачи в приложениях с малым наддувом, а хаузинги с меньшим A/R компрессора используются для больших значений наддува.

A/R турбины, наоборот, значительно влияет на ее производительность, определяя ее способность пропустить тот или иной поток воздуха. Использование меньшего A/R увеличивает скорость потока в турбинном хаузинге, приходящего на турбинное колесо. Это дает возможность увеличить отдачу турбины на низких нагрузках, приводит к более быстрому отклику на дроссель и снижает значение минимальных оборотов двигателя, требуемых для выхода турбины на рабочий наддув. Тем не менее, меньший A/R приводит к тому, что газ попадает на крыльчатку практически по касательной, что уменьшает максимальный поток газа который турбинное колесо способно пропустить. Это также увеличивает подпор газа перед турбиной, ухудшает продувку мотора на высоких оборотах, повышает EGT и как результат всего этого снижает максимальную пиковую мощность.

При выборе конкретного хаузинга для вашего мотора, в любом случае приходится идти на компромисс балансируя между ранним наддувом и пиковой мощностью. Также надо учитывать внутреннюю конструкцию хаузинга. Далекая от оптимальной форма канала, неточности литья, возможные переходы с прямоугольного сечения на круглое - все это, в определенной, мере влияет на эффективность горячего хаузинга. Опытным путем установлено что, например, турбинные хаузинги TiAL с круглым входом имеют лучшую аэродинамику и при том же A/R обеспечивают лучшую продувку на верхах по сравнению с традиционными чугунными хаузингами с прямоугольным входом.



Также при выборе A/R следует принимать во внимание эффективность всего выпускного тракта после турбины. Использование прямоточных выхлопных систем большого сечения позволяет использовать чуть меньший А/Р турбины и при той же пиковой мощности получить более ранний выход на наддув.

Виды выпускных коллекторов и их влияние

В основном все турбоколлекторы делятся на два типа: литые log-style и трубные сварные:




Дизайн турбоколлектора довольно сложный процесс т.к. очень много факторов должно быть принянто во внимание. Ниже приведены общие советы для достижения максимальной производительности:

- Старайтесь использовать максимально возможный радиус поворотов, т.к. как каждый крутой изгиб ранера поглощает часть полезной энергии потоков газа.
- Добивайтесь равной длины ранеров для избежания перекрестного наложения выхлопных импульсов.
- Избегайте резких изменений сечения
- В сводах ранеров избегайте резких углов для сохранения направления и скорости потока
- Для лучшей отзывчивости турбины избегайте больших объемов коллектора, для большей пиковой мощности, наоборот, может быть использован больший объем коллектора
- Оптимально выбирайте длину ранеров и объем коллектора в зависимости от объема мотора и диапазона оборотов на которых необходимо получить наилучшую отдачу

Литые коллектора чаще всего применяются в заводских гражданских компоновках, в то время как сварные трубные коллекторы чаще применяются в спортивных вариантах моторов. Оба вида имеют свои достоинства и недостатки.

Литые коллекторы обычно весьма компактны и более дешевы при массовом производстве.

Трубные коллекторы могут быть изготовлены в малых сериях или единичных экземплярах для конкретного случая и не требуют такой сложной предварительной организации производства как литые. Правильно разработанный и изготовленный трубный коллектор обеспечивает длительный срок эксплуатации и значительное улучшение производительности по сравнению с литым log-style коллектором.

Твинскрольные коллекторы

Твинскольный коллектор может быть как литым так и сварным трубным и используется в паре с соответствующим твинскольным турбинным хаузингом.



Назначение такой конструкции в разделении цилиндров, чьи рабочие циклы могут пересекаться между собой и для лучшего использования выхлопного импульса каждого цилиндра.

Наример, на 4-х цилиндровом моторе с порядком работы цилиндров 1-3-4-2, цилиндр #1 начинает свою фазу выпуска пока еще не закончена выпускная фаза в цилиндре #2, и его выпускной клапан открыт, а в зависимости от величины перекрытия, в этот момент может быть открыт и впускной клапан цилиндра #2. В нетвинскрольном коллекторе импульс высокого давления из цилиндра #1, попав в коллектор, сбивает течение потока цилиндра #2 не позволяя ему хорошо продуться в своей начальной стадии впуска. Также при этом, сам поток из цилиндра #1 теряет часть своей энергии.

Правильной компоновкой твинскрольного коллектора, в данном случае, будет сгруппировать цилиндры #1 и #4 в одной половине коллектора, а цилиндры #2 и #3 - в другой.

Пример твинскрольного турбинного хаузинга:




Более эффективное использование энергии выхлопных газов в твинскрольных системах ведет к улучшению отзывчивости турбины на малых оборотах и большей мощности на больших.

Степень сжатия турбомоторов.

Прежде чем приступить к обсуждению степени сжатия и давлению наддува, важно понять, что такое кнок или детонация. Детонация - это опасный процесс, вызванный спонтанным быстротекущим сгоранием топливновоздушной смеси в цилиндрах. Этот процесс вызывает резкие и большие по величине всплески давления в камере сгорания ведущие со временем к механическому разрушению поршневой группы и износу вкладышей.

Основными факторами, вызывающими детонацию являются:

- Естественная склонность самого мотора к детонации. Поскольку все моторы имеют свои конструкционные особенности, нет простого и однозначного ответа как лучше. Форма камеры сгорания, расположение в ней свечи зажигания, диаметр цилиндра и степень сжатия, качество распыла топлива - все это влияет на склонность или, наоборот, устойчивость конкретного мотора к детонации.

- Внешние условия. В турбомоторах параметры всасываемого турбиной воздуха, его температура и влажность, а также параметры воздуха, который попадает в цилиндры после турбины, влияют на склонность к детонации. Чем выше наддув, тем больше температура воздуха, поступающего в цилиндры, и тем больше вероятность возникновения детонации. Интеркулер с хорошей эффективностью охлаждения сжатого воздуха значительно помогает в борьбе с детонацией.
- Октановое число топлива. Октан - это величина показывающая стойкость топлива к возникновению детонации. Октан типовых гражданских бензинов находится в диапазоне 92-98 единиц. Специальные спортивные виды топлива имеют октан 100-120 и выше единиц. Чем выше октан, тем более стойким является топливо к возникновению детонации.
- Настройки блока управления. Угол зажигания и соотношение воздух/топливо значительным образом влияет на склонность или устойчивость мотора к детонации в различных режимах.

Теперь, когда мы разобрались с общими факторами связанными с детонацией, поговорим о степени сжатия. Степень сжатия (СЖ) определена как:




Где: CR - степень сжатия
Vd - объем цилиндра
Vcv - объем камеры сгорания




СЖ заводских моторов будет разной для атмосферного и турбомотора. Например стоковый мотор Honda S2000 имеет СЖ равную 11.1:1, в то время как турбомотор Subaru WRX имеет СЖ 8.8:1.

Существует много факторов влияющих на максимально допустимую СЖ. Нет одного простого ответа какой она должна быть. В общем случае, СЖ должна быть выбрана максимально возможной для предотвращения детонации, с одной стороны, и обеспечения максимального КПД двигателя, с другой. Факторами влияющими на выбор СЖ в каждом конкретном случае являются: октановое число применяемого топлива, давление наддува, температура воздуха в предполагаемых режимах эксплуатации, форма камеры сгорания, фазы клапанного механизма и противодавление в коллекторе.
Многие современные атмосферные моторы имеют хороший дизайн камеры сгорания и большую стойкость к детонации, что при правильной настройке блока управления позволяет устанавливать на них турбонаддув не меняя заводскую степень сжатия.

Обычной практикой при турбировании атмосферных моторов является увеличение мощности на 60-100% относительно заводской. Тем не менее, для значительных значений наддува требуется уменьшение заводской СЖ.

AFR или соотношение воздух/топливо.

При обсуждении вопроса настройки двигателя, выбраный AFR, наверное, наиболее часто встречающийся вопрос. Правильный AFR имеет крайне высокое влияние на общую производительность и надежность мотора и его компонентов.
AFR определен как соотношение количества воздуха зашедшего в цилиндр к количеству зашедшего в него топлива. Стехиометрическая смесь это смесь при которой происходит полное сгорание топлива. Для бензиновых двигателей стехиометрией является соотношение 14.7:1. Это означает что на каждую часть топлива приходится 14.7 частей воздуха.

Что означают понятия "бедная" и "богатая" смесь? Более низкие значения AFR означают меньшее количество воздуха относительно топлива и такая смесь называется богатой. Аналогично, большие значения AFR означают больше воздуха относительно топлива и называются бедной смесью.

Например:
15.0:1 = бедная
14.7:1 = стехиометрическая
13.0:1 = богатая

Бедная смесь ведет к повышению температуры горения смеси. Богатая - наоборот. В основном атмосферные моторы достигают максимальной отдачи на смеси, несколько богаче стехиометрии. На практике ее держат в диапазоне 12:1...13:1 для дополнительного охлаждения. Это хороший AFR для атмосферного мотора, но он может в некоторых случаях быть крайне опасным в случае с турбомотором. Более богатая смесь снижает температуру в камере сгорания и повышает стойкость к детонации, а также снижает температуру выхлопных газов и увеличивает срок службы турбины и коллектора.

Реально при настройке существует три способа борьбы с детонацией:
- уменьшение давление наддува
- обогащение смеси
- использование более позднего зажигания.

Задачей настройщика является поиск наилучшего баланса этих трех параметров для получения максимальной отдачи и ресурса турбомотора.

По материалам Garrett TurboTech.
Перевод и адаптация Oleg Coupe (TurboGarage)
При использовании материалов ссылка на источник обязательна.


Переход: Часть 1 Часть 2 Часть 3
  (C) Turbo Garage, Киев, тел: +38067-4667188 12:00-22:00

ђҐ©вЁ­Ј@Mail.ru